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Quantum algorithm for non-local coordination 
Nikolay Raychev 

 
Abstract - In this report is considered an algorithm for quantum non-local coordination. The algorithm for non-local coordination have been 
implemented as a quantum logic circuit, which include paired qubits, which can be represented as unitary matrices. The solution can be 
found through the constraints, on which these matrices must comply.  The proposed quantum circuit opens new perspectives for more efficient 
methods for non-local quantum coordination.  

Index Terms— boolen function, circuit, composition, encoding, gate, quantum.   

——————————      —————————— 

1 INTRODUCTION                                                                     
In the recent years with the help of the geometric representation 
of the distribution of the probabilities the understanding for the 
quantum nonlocallity was significantly improved. The local dis-
tributions forms a closed convex set with a finite number of ex-
treme points, the aspects of this polyhedron determine narrow 
BELL inequalities.  In order to characterize the properties of the 
non-local quantum correlation, associated with the proposed 
circuit, it is important to classify all possible non-local correla-
tions, each of which theoretically could be implemented from 
two or more sides, without allowing any communication. 
 
In the proposed algorithm for non-local coordination as a substi-
tute for the classical necessity of communication is used a quan-
tum entanglement. The quantum entanglement cannot be used 
for direct transmission of information between distant sides. 
And yet it can be used to reduce the amount of the communica-
tion, requiring the processing of different distributed computa-
tional tasks. Here we present a simple logical quantum circuit 
with distributed logic. The proposed quantum circuit could be 
used for detection of other practical applications based on non-
local synchronization.  
 
Given that the quantum entanglement allows for rapid reduction 
of the required volume of classical information at communica-
tion, upon the implementation of some distributed computation-
al tasks it is natural to be thought in the direction of full elimina-
tion of the need of communication. In other words, there are 
distributed tasks that would be impossible to be performed in 
the classical world, if the participants are not allowed to com-
municate, but these tasks can be performed without any form of 
communication, provided that they share the information by a 
preliminary quantum entanglement. 
 

2    QUANTUM LOGARITHM FOR NON-LOCAL 
COORDINATION  

This simulation demonstrates one of the possible applications of 
the quantum logical circuits. The purpose of the particular algo-
rithm is two isolated one from another objects to determine the 
coordinates of the target position in a 3 × 3 matrix, provided that 
the first object has a information for the row, and the second - for 
the column. 

The rules are as follows:  

• Topological grid - 3 × 3 matrix 
• Two participating sides (A and B), which are isolated 

from one another.  
• A and B has by 2 attempts to find the target position.  
• A receives information for the row, in which is located 

the target position.  
• B receives information for the column, in which is locat-

ed the target position.   

Design 

Quantum circuits:  

• Lines = vectors/qubits 
• Operators = Matrices 

For obtaining the unknown and non-local values is necessary 
both sides to share the paired state of two pairs of qubits :  

|𝜓〉 =  1
√2

 (|1, 1, 1, 1〉 − |0, 1, 0, 1〉 − |1, 0, 1, 0〉|0, 0, 0, 0〉) 

The first two qubits belong to A, and the last two to B. Upon ob-
taining of their inputs χ and γ, A and B apply unitary transfor-
mations Aχ  and Bγ, in accordance with the following matrices. 

A1 = 1
√2

 �

𝑖    0 0 1
0 −𝑖 1 0
0    𝑖 1 1
0    0 1 𝑖

 �,   

A2 = 1
√2

 �

   𝑖 1   1    𝑖
−𝑖 1 −1    𝑖
   𝑖 1 −1 −𝑖
−𝑖 1    1 −𝑖

 �,  

 A3 = 1
√2

 �

−1 −1 −1    1
   1    1 −1    1
   1 −1    1    1
   1 −1 −1 −1

 � 
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B1 = 1
√2

 �

   𝑖   −𝑖    1    1
−𝑖 −𝑖    1 −1
   1    1 −𝑖    𝑖
−𝑖    𝑖    1    1

 �, 

 B2 = 1
√2

 �

−1    𝑖   1      𝑖
   1    𝑖   1 − 𝑖
   1 −𝑖   1     𝑖
−1 −𝑖    1 −𝑖

 �,  

 B3 = 1
√2

 �

   1 0   0    1
−1 0   0    1
    0 1    1    0
    0 1 −1    0

 � 

Pairing  
Both participating sides A and B use two pairs of paired qubits as 
a resource for their circuits.  

The generation of the superpositions is done identically with the 
analogous realization in the quantum logical circuits.  

 

Figure 1: The generation of a superposition 

The input of the circuit is initialized as switched off. Then in 
order to randomize the state of the first wire is applied the 
Hadamard operator. Both lines are connected by applying a XOR 
on the first bit and a controlled NOT operator on the second. In 
this way both wires are paired in a superposition containing all 
possible states. More precisely, the system ends up in the super-
position 1

√2
 (|1, 1〉|0, 0〉) with both wires α1 and α2. Since the 

designed algorithm uses two pairs of paired qubits, the same 
logic is applied two times:  

 
Figure 2: The generation of a superposition 

The output of this circuit is the superposition:  

 1
√2

 (|1, 1, 1, 1〉 − |0, 1, 0, 1〉 − |1, 0, 1, 0〉|0, 0, 0, 0〉) 

The first two qubits, α1 and β1 are intended for A, α2 and β2 are 
for B.  

Used Operators  
The operators correspond to the matrices. For the needs of the 
current logic circuit are used six different operators, three of 
which are 1-bit, and three 2-bit.  

The three 1-bit operators are Hadamard, √NOT, and Splitter. The 
diagram below shows the used symbols and equivalent matrices 
for each of the operators:  

 

Name Hadamard √𝑁𝑁𝑁 Splitter 
Symbol 

   
Matrix 1

√2
 �1 1

1 −1� 
1
√2

 �1 −1
1 1 � 1

√2
� 1 𝑖
𝑖 1� 

Table 1: 1-bit operators  

Each one of these operators mixes the input states, the interfer-
ence of two qubits in a superposition may lead to decoherention. 
To prevent this from happening, it is necessary to be checked the 
phases of the intermediate state: they are coordinated, when the 
initial state is 1 and are non-coordinated when the input parame-
ter is 0. Upon the presence of two consecutive operators the 
interference is reflected in a different way, when it is applied on 
the second operator.  

The implementation of the 2-bit operators in practice is more 
simple, since neither of them mixes the states. They all have 
classical equivalents. The swap operator swaps the states of both 
bits, the controlled NOT operator (𝐶𝐶𝐶𝐶) inverts the state of one 
of the bit, only if the other has the value 1. The decrementing 
operator reduces the value with 1. The next diagram shows the 
equivalent matrices for each of the operators:  

Name Swap 𝐶𝐶𝐶𝐶 Decrement 

Symbol 

   

Matrix 
�

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 � �

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 � �

1 0 0 0
0 1 0 1
0 0 1 0
0 1 0 0

 � �

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 � 

Table 2: 2-bit operators 

If two of these operators are applied consistently on one of the 
lines, the effect is equivalent to М1⊗М2, where the matrix M1 is 
the second operator. When they are applied on separate lines, the 
sequence of the operators is irrelevant. When it is necessary, a 1-
bit operator to be implemented for manipulation on 2 bits, can 
be used a tensor product with a single matrix, in order to extend 
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the equivalent matrix from 2 × 2 to 4 × 4. If the operator is in-
tended to be applied on the first bit, the equivalent 2-bit operator 
is G⊗I, where G is the equivalent matrix of the 1-bit operator and 
I is the single matrix. If the operator is intended to be applied on 
the second bit, then the equivalent operator is I⊗G.  

Composing a circuit from a tensor product  

In order to multiply the effects from the examined matrices, we 
will unite them in a single matrix, equivalent to all circuits. For a 
circuit, which relates to the right column, composed of a Decre-
menting operator followed by √NOT operator of the second line, 
which works in the following way:  

 

Figure 3: Tensor product 

A tensor product is used for adjustment of the √NOT operator 
and its application in respect of the second line. Then the result-
ing matrix is multiplied by the matrix of the Decrementing opera-
tor. The obtained 4 x 4 matrix represents the functionality of the 
circuit in its entirety.  

The circuits that build the solution: 

 

Figure 4: Circuits 

For evaluation of the coordinates of the target position in a 3 × 3 
matrix are implemented 6 quantum logic circuits, one for each 
row and one for each column. This assessment is done in two 
stages. Initially a pairing of two pairs of qubits is carried out, 
then in the context of the prepared superpositions are assessed 
the parameters of the exchanged signals, at the second stage is 
assessed the position.  

 

Complete diagram of the solution 

 

Figure 5: Complete diagram of the solution 

On the diagram are shown the six quantum logic circuits, which 
are used in the solution, one for each row and one for each col-
umn. In this case, the target position is located on the first row, 
last column. The inputs to the selected circuits are paired in ad-
vance qubits. Qubit α1 is paired with qubit α2 and similarly β1 

with β2. The qubits are in a superposition, so that the result of 
each circuit is contained in α1 and β1 or in α2 and β2. After each 
of the two sides A and B run their respective paired qubits 
through the circuit selected by them, they measure both lines. 
For each line/bit, they will receive 1 or 0. Then A and B use these 
results to find the coordinates of the probable location for the 
position sought.  

A and B use the following logic:   

1. They check the value from the first line - if it is 1, they 
mark the line as probable 

2. They check the value from the second line by the same 
logic 

3. The third line is marked as probable only if on one of 
the already checked lines is obtained a result 0.  

This quantum logic ensures the finding of the solution sought. 
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Implementation The diagram below shows the implementation 
of the algorithm, presented as a quantum logic circuit:   

 

Figure 6: Implementation of the algorithm 

Below is shown also the implemented code for simulation of the 
upper circuit and the measurement of the result: 

 public static Distribution<GlobalState> Localization (int refRow, 
int refCol) { 

// Both sides A and B pair by 2 qubits 

var globalState = QubitsSuperposition(); 

// A run its qubits for the selected row of the quantum circuit 

var tempState = ARunCircuit(globalState, refRow); 

// B run its qubits for the selected column of the quantum circuit 

var finalState = BRunCircuit(tempState, refCol); 

// Measurement of the output states from the quantum circuits 

return Measure(finalState); 

} 

Initially the system is initialized in the state |0, 0, 0, 0〉, with the 
aim of: limiting the size. Then are applied both Hadamard and 
CNOT operators, which create two pairs of paired qubits. In this 
way the system is placed in the state: 
(|0, 0, 0, 0〉|0, 1, 0, 1〉|1, 0, 1, 0〉|1, 1, 1, 1〉) 1

√2
. Next step is both 

upper and lower circuits respectively of A and B to be isolated. 
This does not affect the state of the system. Then, B and A again 
run their circuits. Since the operations are applied to different 
lines, the order in which this will happen is irrelevant. If it is 
necessary to be used 4-qubit superpositions instead of 2-qubit, a 

tensor product with single matrices is applied. Since: (A ⊗ I).( I 
⊗ B) = A ⊗ B, it is possible their circuits to be implemented 
together by a tensor product. The state of the system, after apply-
ing A3  ⊗ B1  is: (i|1, 0, 0, 0〉 − |0, 1, 0, 0〉 − |1, 0, 1, 0〉𝑖|0, 1, 1, 0〉 
i|0, 0, 0, 1〉 − |1,1, 0, 1〉 − |0, 0, 1, 1〉𝑖|1, 1, 1, 1〉) t1−𝑖

4
,  And finally, 

both sides A and B carry out a measurement of their parts of the 
system. They can be in any of the displayed in the upper super-
positions state with equal probability. They can be in the super-
position |1, 0, 0, 0〉 which is |0, 0〉 for А and |𝟏,𝟎〉 for B.  

Matrix of the Constraints  

It must be taken into account, that at the input of а circuit, in this 
case, this is a superposition over two pairs of paired qubits, is 
applied a scale factor to each column based on the state's ampli-
tude. Then the imposition at the output is determined by sum-
ming in rows. For simplification purposes is applied: columns = 
inputs and rows = outputs. The circuit used is initialized in a 
superposition: (|𝟎,𝟎,𝟎,𝟎〉|𝟎,𝟏,𝟎,𝟏〉|𝟏,𝟎,𝟏,𝟎〉|𝟏,𝟏,𝟏,𝟏〉) 𝟏

√𝟐
. This 

superposition only uses 4 of the 16 possible states (all the other 
have an amplitude of 0). This means that all columns except the 
four columns corresponding to the states in the used input su-
perposition will be multiplied by zero. That’s why they don't 
affect the result. The remaining four columns all contribute 
equally. It is also known that only certain results are insignifi-
cant. This would be useful if the amplitudes of the significant 
outputs are scrambled, but the amplitudes of any losing output 
must be zero. Otherwise, a consistently winning strategy is not 
available. So that the most obscured rows actually correspond to 
the winning outputs, which should not be limited additionally, 
and the non-obscured rows are the losing outputs. Since one and 
the same input is always used, columns which are significant are 
always the same: 1st, 6th, 11th, and 16th. The significance of 
these columns is extracted and analyzed from the tensor product 
of the A and B matrices. In the first column is a tensor product 
from the first selected column of A and the first selected column 
of the B matrix. The sixth column is a tensor product from the 
second columns of the A and B matrices, the 11-th from the third 
columns, and the 16th from fourth columns. The columns, which 
are significant in the 16 × 16 matrix are generated entirely by 
pairs of columns with the same position from the used 4 × 4 A 
and B matrices. This means that summing of the significant col-
umns is in fact only a computational product of the rows A and B. 
This allows to be rewritten all significant restrictions in the form 
Arow, r=x . Brow, r=y = 0. Since there are 9 matrix combinations and 8 
insignificant rows per combination, this means 72 significant 
equations which must be implemented over the 96-th complex 
numbers, composing the 6-th matrices. Solving this system of 
equations will allow to be found matrices that represent a solu-
tion. The matrices presented above are a particular example of a 
solution of the system.  

Result 
All the information required to understand the solution is non-
local. The implementation (the simulation of) the solution is just 
a matter of multiplying the initial vector with the correct (signifi-
cant) matrices and verification whether the resulting states con-
tain only significant (non-zero) amplitudes.  
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The matrices that correspond to the significant circuits have the 
property to transform the initially paired qubits without the 
amplitude to lose states. The system with the matrices of the 
restrictions must be solvable when the matrices are unitary 
(through the laws of the quantum mechanics), but unsolvable 
when the matrices are stochastic (i.e.  the classical physics).  

3 CONCLUSION 

The quantum logarithm for non-local coordinated strategy for 
Localization shows the ability to detect consequently correct 
solutions, which can not be consequently achieved through the 
laws of the classical physics.  

The algorithms for searching are implemented as quantum logic 
circuits, which include paired qubits, which can be represented 
as unitary matrices. The solution can be found through the re-
strictions, on which these matrices must comply. The classical 
simulation of the developed quantum algorithm for a solution of 
this task achieves on average 8/9 successful solutions, which is: 
~ 88%. Upon presence of a quantum computer, the success rate 
of this algorithm would probably reach ~100 %. 
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